Departmentof

BioMolecular Sciences
Overview:
Developing a ZIC-HILIC chromatography method for quicker analysis of FPOP samples
Co-elution of isomeric oxidized peptides
Separation of different peptides

Introduction:

 In hydroxyl radical protein footprinting (HRPF),accurate relative quantification of oxidative accurate relative quantification of oxidative
modifications at the amino acid level by ETD is modifications at the amino acid level by ETD is
hampered by the separation of the peptides by reverse phase chromatography. This requires custom MS/MS methods to equally sample all isomeric oxidation products. We are developing a chromatography method to ideally co-elute peptide
modification isomers while separating different modification isomers while separating different
peptides. Use of large ID SEC columns can ideally coelute peptide oxidation isomers while providing some resolution for different peptides, but give poor lower
隹 limits of quantitation. Hybrid trap-capillary SEC
sielded ideal co-elution of oxidation isomers, but had yielded ideal co-elution of oxidation isomers, but had
issues with limits of quantification. Zwitterionic issues with limits of quantification. Zwiterionic)
hydrophilic interaction chromatography (ZIC-HILI) showed a similar ability to ideally co-elute oxidation isomers with better sensitivity.

Methods:

We performed the hybrid trap-capillary SEC method by placing in-line a C18 trap column immediately prior to a $0.3^{*} 300 \mathrm{~mm}$ custom-packed Sepax Zenix-C SEC-80 column. ZIC-HILIC used a $0.3^{*} 150 \mathrm{~mm}$ Milipore ZIC-HILIC column. Both methods were tested using unoxidized
bovine serum albumin (BSA), oxidized Fibrinopeptide B (GluB), myoglobin and three synthetic oxidation isomeric peptides (R (Hyp)MFAIWK, RPMYAIWK, and RPMFSIWK). GluB and myoglobin samples were mixed to a final concentration of $10 \mu \mathrm{M}$ peptide, 1 mM adenine as a radical dosimeter, 17 mM
glutamine to balance radical scavenging, 100 mM hydrogen peroxide, and 20 mM sodium phosphate buffer at pH 7.0. GluB and myoglobin samples were oxidized by FPOP and quenched immediately with catalase and Orbitrap Fusion mass spectrometer.

Development of a Capillary LC Method for Co-Elution of Isomeric Peptide Oxidation Products

Niloofar Abolhasani Khaje ${ }^{1}$ and Joshua S. Sharp ${ }^{1}$

${ }^{1}$ Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS

Background

Reverse Phase

Ideal Method

Results:

Figure 3. Selected Product Ion Chromatograms of oxidized RPMFAIWK demonstrating co-elution
of isomers obtained via hyrid the of isomers obtained via hybrid trap-
capillary SEC. Black traces are the capiliary SEC. Black traces are the
unoxidized c2 ion, specific for the tw isomers containing oxygen on F or A , and red traces are the oxidized c 2 ion, specific for oxidation of the proline.

Figure 2. The optimal gradient used for hybrid
capillary-trap SEC to obtain capiliary-trap SEC to obtain
the co-elution of isomers and separation different

Figure 4. Selected product ion chromatogram of unoxididized, singly and doubly oxidized of
GYSLGNWVCAAK, a tryptic digested ysozyme peptide. Demonstrating the low intensity of oxidized peptides hampering the general applicability of the

a Water 0.05% TFA
a Actontitile 0.05% TAA

Figure 9. Measured oxidation of RPMFAIWK oxidation isomers calculated using ETD spectra at 5 different retention times via ZIC-HILIC. Each color and shape represent a specific molar ratio and retention time, respectively.

igure 10. Peptide Level Comparison of Oxidized Myoghin Using ZIC-HLIC and

 Figure 10. Peptide Level Comparison of Oxidized Myoglobin Using ZIC-HILIC andRP Chromatography. For ZIC-HILIC 13 pmols and for C18 RP 25 pmols of digested myoglobin were injected.
Conclusions:
Co-elution of isomeric oxidized peptides and oxidized myoglobin isomeric peptides were achieved using 0.05% TFA in ACN and water buffers. The measurement site of the peak does not affect the oxidation ratio observed. in compare to C 18 nano-RP column.
Acknowledgements:
This research was supported by the National Institute of General Medical Sciences
R01GM096049A).
Reference:
Xie, B., and Sharp, J. S. (2016) Relative Quantification of Sites of Peptide and Protein Modification Using Size Exclusion Chromatography Coupled with Electron Transter
Dissociation, JAm Soc Mass Spectrom 27, 1322-1327.

